
Understanding and Auto-Adjusting
Performance-Sensitive Configurations
Shu Wang Chi Li

Henry Hoffmann Shan Lu
University of Chicago

Chicago, Illinois
{shuwang,lichi,hankhoffmann,shanlu}@cs.uchicago.edu

William Sentosa
Achmad Imam Kistijantoro

Bandung Institute of Technology & Surya University
Bandung, Indonesia

williamsentosa@students.itb.ac.id;imam@stei.itb.ac.id

Abstract
Modern software systems are often equipped with hundreds
to thousands of configurations, many of which greatly affect
performance. Unfortunately, properly setting these config-
urations is challenging for developers due to the complex
and dynamic nature of system workload and environment.
In this paper, we first conduct an empirical study to un-
derstand performance-sensitive configurations and the chal-
lenges of setting them in the real-world. Guided by our study,
we design a systematic and general control-theoretic frame-
work, SmartConf , to automatically set and dynamically ad-
just performance-sensitive configurations to meet required
operating constraints while optimizing other performance
metrics. Evaluation shows that SmartConf is effective in
solving real-world configuration problems, often providing
better performance than even the best static configuration
developers can choose under existing configuration systems.

CCS Concepts • Software and its engineering →
Software performance; Software configuration
management and version control systems; Software
reliability; • Computer systems organization → Cloud
computing;

Keywords Software Configuration; Performance;
Distributed Systems; Control Theory

ACM Reference Format:
Shu Wang, Chi Li, William Sentosa, Henry Hoffmann, Shan Lu,
and Achmad Imam Kistijantoro. 2018. Understanding and Auto-
Adjusting Performance-Sensitive Configurations. In Proceedings of
2018 Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS’18). ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3173162.3173206

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173206

1 Introduction
“all constants should be configurable, even if we can’t

see any reason to configure them.” — HDFS-4304

1.1 Motivation
Modern software systems are equipped with hundreds to
thousands of configuration options allowing customization
to different workloads and hardware platforms. While these
configurations provide great flexibility, they also put great
burdens on users and developers, who are now responsi-
ble for setting them to ensure the software is performant
and available. Unfortunately, this burden is more than most
users can handle, making software misconfiguration one of
the biggest causes of systemmisbehavior [16, 17, 59]. Miscon-
figuration leads to both incorrect functionality (e.g., wrong
outputs, crashes) and poor performance. Although recent
research has tackled functionality issues arising from mis-
configuration [58, 59], poor performance is an open problem.
In server applications, customizable configuration

parameters are especially common. These configurations
control the size of critical data structures, the frequency
of performance-sensitive operations, the thresholds and
weights in workload-dependent algorithms, and many other
aspects of system operation. A previous study found that
20% of user-reported misconfiguration problems in MySQL
database systems result in severe performance degradation,
and yet, performance-related misconfigurations are
under-reported [61]. Other studies found that a majority
of configuration issues in Hadoop systems were related to
system performance, caused by poorly tuned configuration
parameters [26], and about a third of the misconfiguration
problems result in memory-related performance issues,
particularly OutOfMemoryErrors [43].
Setting performance-sensitive configurations, PerfConfs

for short, is challenging because they represent tradeoffs;
e.g., between memory usage and response time. Managing
these tradeoffs requires deep knowledge of the underlying
hardware, the workload, and the PerfConf itself. Often, these
relationships are not, or cannot, be clearly explained in the
documentation [18]. Even with clear documentation, the
workload and system interaction are often too complicated
or change too quickly for users to maintain a proper setting

https://doi.org/10.1145/3173162.3173206
https://doi.org/10.1145/3173162.3173206
http://issues.apache.org/jira/browse/HDFS-4304

[43]. In many cases, there is simply no satisfactory static
setting of a PerfConf [11].
Configuring software to an optimal point in a tradeoff

space is a constrained optimization problem. Operating re-
quirements represent constraints, and the goal is finding
the optimal PerfConf setting given those constraints. For
example, a larger queue makes a system more responsive to
bursty requests at the cost of increased memory usage. Here
the constraint is that the system not run out of memory and
the goal is to minimize response time. Prior work addresses
this problem in several ways, with no perfect solution.
The industry standard is simply to expose parameters to

users who are forced to become both application and system
experts to understand the best settings for their particular
system and workload, as shown in Section 2.
Control theoretic frameworks handle constrained opti-

mization for non-functional software properties [14]. Typical
control solutions, however, require a deep understanding of a
specific system [25, 34, 35, 49, 64], and hence, are impractical
for real-world developers to adopt. Even general control syn-
thesis techniques [12] still require user-specified parameters.
More importantly, they cannot handle challenges unique to
PerfConfs, such as hard constraints—e.g., not going out of
memory—and indirect relationships between PerfConfs and
performance.
Machine learning techniques have been applied to ex-

plore complex configuration spaces to find near optimal
settings without considering constraints on operating be-
havior [5, 53, 60, 68]. Some approaches employ ML to meet
resource constraints in dynamic environments [9]. In general,
however, machine learning techniques provide very limited
formal guarantees that they will meet strict constraints—
e.g., preventing out-of-memory-errors—in dynamic environ-
ments [51]. In contrast, control theory specifically addresses
formal analysis of system dynamics [20]. Empirical studies
of computer resource management confirm that control the-
oretic solutions do a better job of meeting constraints in
practice [36].

1.2 Contributions
In this paper, we first conduct an empirical study to
understand real-world performance-related configuration
problems. The results motivate us to construct a
general framework, SmartConf . Unlike traditional
configuration frameworks —where users set PerfConfs
at system launch—SmartConf automatically sets and
dynamically adjusts PerfConfs. SmartConf decomposes
the PerfConf setting problem to let users, developers, and
control-theoretic techniques —which we specifically design
for PerfConfs—each focus on what they know the best, as
shown in Table 1.

Prior Who answers these questions? SmartConf
N/A Which C needs dynamic adjustment? Developers
N/A What perf. metric M does C affect? Developers
N/A What is the constraint on metric M? Users
Users How to set & adjust configuration C? SmartConf

Table 1. Traditional configuration vs SmartConf

Empirical study We look at 80 developer-patches and 54
user-posts concerning PerfConfs in 4 widely used large-
scale systems. We find (1) PerfConfs are common among
configuration-related patches (>50%) and forum questions
(∼30%); (2) almost half of PerfConf patches fix performance
issues caused by improper default settings; (3) properly set-
ting PerfConfs requires considering dynamic workload, en-
vironmental factors, and performance tradeoffs.

Our study also points out challenges in setting and ad-
justing PerfConfs: (1) about half of PerfConfs threaten hard
performance constraints like out-of-memory or out-of-disk
problems; (2) about half of PerfConfs affect performance
indirectly through setting thresholds for other system vari-
ables; (3) more than half of PerfConfs are associated with
specific system events and hence only take effect condition-
ally; and (4) often different configurations affect the same
performance goal simultaneously, requiring coordination.

SmartConf interface Guided by this study, we design a
new configuration interface. For developers, SmartConf en-
courages them to decide which PerfConf should be dynami-
cally configured and enables them to easily convert a wide
variety of PerfConfs from their traditional format—requiring
developers/users to set manually at application launch—into
an automatically adjustable format. For users, SmartConf al-
lows them to specify the performance constraints they desire,
without worrying about how to set and adjust PerfConfs to
meet those constraints while optimizing other performance
metrics.

SmartConf control-theoretic solution To automate Per-
fConf setting and adjustment, we explore a systematic and
general control-theoretic solution to implement SmartConf
library. We explicitly design for the four PerfConf challenges
noted above, without introducing any extra parameter tun-
ing tasks for developers or users—problems that were not
handled by existing control theoretic solutions.

Evaluation Finally, we apply the SmartConf library to
solve real-world PerfConf problems in widely used open-
source distributed systems (Cassandra, HBase, HDFS, and
MapReduce). With only 8–76 lines of code changes, we eas-
ily refactor a problematic configuration to automatically ad-
just itself and deliver better performance than even the best
launch-time configuration settings. Our evaluation shows

PerfConf AllConf
Issues Posts Issues Posts

Cassandra 20 20 32 60
HBase 30 7 48 33
HDFS 20 7 31 39
MapReduce 10 20 13 25

Total 80 54 124 157

Table 2. Empirical study suite

that, although not a panacea, SmartConf framework solves
many PerfConf problems in real-world server applications.

2 Understanding PerfConfs
“This is hard to configure, hard to understand, and

badly documented.” — HBASE-13919

2.1 Methodology
We study Cassandra (CA), HBase (HB), HDFS (HD), and
Hadoop MapReduce (MR). CA and HB are distributed key-
value stores, HD is a distributed file system, and MR is a
distributed computing infrastructure. These four systems
provide a good representation of modern open-source widely
used large systems.
We first study software issue-tracking systems. The de-

tailed developer discussion there helps us understand how
and why developers introduce and change PerfConfs, as well
as the trade-offs. We first search fixed issues with keyword
“config” or with configuration files (e.g., hdfs-default.xml in
HD) in patches. We then randomly sample them and man-
ually check to see if an issue is clearly explained, about
configuration, and related to performance (i.e., whether de-
velopers mentioned performance impact and made changes
accordingly). We keep doing this until we find 20, 30, 20,
10 PerfConf issues for CA, HB, HD, and MR, matching the
different sizes of their issue-tracking systems. The details
are shown in Table 2.
We also search StackOverflow [48] with key words like

“config” to randomly sample 200–300 posts for each system.
We then manually read through 1000 total posts to identify
configuration and PerfConf posts shown in Table 2. We find
the StackOverflow information less accurate than the issue-
trackers, and hence only discuss user complaints in Section
2.2.1, skipping in-depth categorization.

Threats to Validity This study reflects our best effort to
understand PerfConfs in modern large-scale systems. Our
current study only looks at distributed systems. We also
exclude issues or posts that contain little information or are
not confirmed (answered) by developers (forum users). Every
issue studied was cross-checked by at least two authors, and
we emphasize trends that are consistent across applications.

Category CA HB HD MR

Add a new configuration to ...
Tune a new functionality 11 16 8 4
Replace hard-coded data 2 1 7 4
Refine an existing conf. 2 0 0 1

Change an existing configuration to ..
Fix a poor default value 5 13 5 1

Table 3. Different types of PerfConf patches

CA HB HD MR

User-Request Latency 14 28 20 9
Internal Job Throughput 8 3 5 0
Memory/Disk Consumption 9 15 8 7

Always-on Impact 9 17 8 6
Conditional Impact 11 13 12 4

Direct Impact 7 16 8 4
Indirect Impact 13 14 12 6

Table 4. How a PerfConf affects performance (one PerfConf
can affect more than one metric)

2.2 Findings
2.2.1 How Common are PerfConf Problems?
As shown in Table 2, 65% of issues and 35% of posts that we
studied involve performance concerns.

What are PerfConf Issues? For about half of the issues,
either the default (24 of 80 cases) or the original hard-coded
(14 of 80 cases) setting caused severe performance issues.
Thus, the patch either changed a default setting or made a
hard-coded parameter configurable. The other half added
PerfConfs to support new features, as shown in Table 3.

What are PerfConf Posts? In about 40% of studied posts,
users simply do not understand how to set a PerfConf. In
another 60%, users ask for help to improve performance or
avoid out-of-memory (OOM) problems. In about half the
cases, the users ask about a specific PerfConf. In other cases,
the users ask whether there are any configurations they can
tune to solve a performance problem, and the answers point
out some PerfConfs. Similar to a prior study [43], we found
many posts related to OOM (∼30%).

2.2.2 What are PerfConfs’ Impact?

What Type of Performance do They Affect? As shown
in Table 4, most PerfConfs affect user request latency. They
also commonly affect memory or disk usage, threatening
server availability through Out-of-Memory (OOM) or Out-
of-Disk (OOD) failures (half the cases). Naturally, one metric
could be affected by multiple PerfConfs simultaneously, with
several coordination issues [4, 37].

http://issues.apache.org/jira/browse/HBASE-13919

CA HB HD MR

Configuration Variable Type
Integer 15 23 19 9
Floating Points 4 5 0 0
Non-Numerical 1 2 1 1

Deciding Factors
Static system settings 0 1 0 1
Static workload characteristics 4 0 0 2
Dynamic factors 16 29 20 7

Table 5. How to set PerfConfs

As Table 4 indicates, most PerfConfs affect multiple
performance metrics (61 out of 80 issues). There are also
13 cases where the PerfConf has a trade-off between
functionality and performance. For example, larger
mapreduce.job.counters.limit provides users with more job
statistics (functionality), but increases memory consumption
(performance) and may even lead to OOM.

Most issue reports do not quantify performance impact.
As our evaluation will show (Section 6), the impact could be
huge, causing severe slow-downs or OOM/OOD failures.

When & How to Affect Performance? About
half of PerfConfs affect corresponding performance
metrics conditionally, being associated with a par-
ticular event or command. For example, in HDFS,
shortcircuit.streams.cache.size decides an in-memory
cache size, and affects memory usage continually, while the
number of balancing threads balancer.moverThreads affects
user requests only during load balancing.
Almost half of the configurations directly affect perfor-

mance, such as the cache.size and moverThreads mentioned
above. The other half affects performance indirectly by im-
posing thresholds on some system variables—e.g., queue
size ipc.server.max.queue.size, number of operations per file
dfs.namenode.max.op.size, and number of outstanding pack-
ets dfs.max.packets.

2.2.3 How to Set PerfConfs?

Format of PerfConfs A prior study shows configurations
have many types [57]. PerfConfs, however, are dominated by
numerical types. As shown in Table 5, the majority (>80%)
are integers, and a small number of them (∼10%) are floating-
point. There are 5 cases where the configurations are binary
and determine whether a performance optimization is en-
abled. A prior study shows that the difficulty of properly
setting a configuration increases when the number of poten-
tial values increases [57]. Thus, due to their numeric types,
PerfConfs are naturally difficult to set.

-	 error	 Controller	 System	
adjusted	

configura5on	
performance	

goal	

disturbance	

measured	performance	

getCo
nf	

setPerf	

Figure 1. Using a controller to adjust PerfConf (gray parts
are extra controller-related components in SmartConf .)

Deciding Factors of PerfConf SettingWe study what fac-
tors decide the proper setting of a PerfConf based on devel-
opers’ discussion and our source-code reading (Table 5). In 2
cases, the setting depends only on static system features. For
example, Cassandra suggests users set the concurrent_writes

to be 8 × number_o f _cpu_cores . In 6 cases, it depends on
workload features known before launch; e.g., input file size.
Ideally, these PerfConfs would be set for each workload.
In most cases (∼90%), it depends on dynamic workload

and environment characteristics, such as a job’s dynamic
memory consumption or node workload balance. For exam-
ple, in CA6059, it discusses memtable_total_space_in_mb, the
maximum size of Cassandra server’s in-memory write buffer.
Depending on the workload’s read/write ratio and the size
of other heap objects, the optimal setting varies during run
time.With no support for dynamic configuration adjustment,
Cassandra developers chose a conservative setting that low-
ers the possibility of OOM by sacrificing write performance
for many workloads.

2.3 Summary
Our study shows that PerfConf problems are common in
real-world software. A single PerfConf often affects multi-
ple performance metrics and its best setting may vary with
workload and system. Thus, setting PerfConfs properly—
i.e., to achieve the desired behavior in multiple metrics—is
challenging for both developers and users. Ideally, these soft-
ware systems would support users by automatically setting
PerfConfs and dynamically adjusting them in response to
changes in environment, workload, or users’ goals.

3 SmartConf Overview
“I don’t know what idiot set this [configuration] to

that.. oh wait, it was me...” — HDFS-4618

SmartConf is a control-theoretic configuration framework
for PerfConfs. As shown in Figure 1, under SmartConf , users
only need to specify performance goals, instead of the exact
configuration settings. With a small amount of refactoring,
which we will detail later, the SmartConf -equipped system
dynamically adjusts PerfConfs to satisfy user-defined perfor-
mance goals—such as memory consumption constraints and
tail latency requirements—despite unpredictable, dynamic
environmental disturbances and workload fluctuations.

http://issues.apache.org/jira/browse/HDFS-4618

1 /* SmartConf.sys */

2 max.queue.size @ memory_consumption_max

3 max.queue.size = 50

4
5 /* HBase.conf */

6 memory_consumption_max = 1024

7 memory_consumption_max.hard = 1

Figure 2. SmartConf configurations

Why controllers? Machine learning (ML) and control the-
ory are two options that can potentially automate config-
uration. We choose control theory for two reasons. First,
controllers—unlike ML—are specifically designed to handle
dynamic disturbances [20], such as environment changes and
workload fluctuation, which is crucial in setting many Perf-
Confs as discussed in Section 2.2.3. A controller dynamically
adjusts a configuration based on the difference between the
current performance and the goal, as illustrated in Figure 1.
In contrast, anMLmodel decides exact configuration settings
directly, which is more difficult in dynamically changing en-
vironments.

Second, ML methods are better than controllers in de-
ciding optimal settings, which fortunately is unnecessary
for most PerfConfs. As shown in Table 4, many configu-
rations affect memory and disk consumptions, where the
main concern is not exceeding limits instead of achieving
optimal values. Even for those PerfConfs that affect request
latencies, the corresponding goals are usually maintaining
service-level-agreements, instead of achieving optimal laten-
cies. Controllers are a better solution for meeting these types
of constrained problems because they provide formal guaran-
tees that they will meet the constraint. To handle PerfConfs,
we modify standard control techniques but still provide prob-
abilistic guarantees. ML would be a better choice if the goal
was finding the best performance rather than meeting a
performance constraint with guarantees.

What are the challenges? Our goal is to make control-
theoretic benefits available to developers who are not trained
in control engineering. There are two high-level challenges:
(1) how to automatically synthesize controllers that can ad-
dress unique challenges in the context of PerfConfs and (2)
how to allow developers to easily use controllers to adjust
a wide variety of configurations in real-world software sys-
tems with little extra coding. We discuss how SmartConf
addresses these two challenges in the next two sections.

4 SmartConf Framework
“It will be even great if we can dynamically
tune/choose a proper one.” — HBASE-7519

SmartConf provides a library for developers who want
to have any configuration C automatically and dynamically
adjusted to meet a goal of a performance metric M , such
as request latency, memory consumption, etc. This section

1 /* For direct configurations */

2 public class SmartConf{

3 SmartConf (string ConfName); //initialize the controller

4 void setPerf (double actual); //actual is obtained by a sensor

5 int getConf (); //controller computes the adjusted setting

6 void setGoal (double goal);

7 }

Figure 3. SmartConf class

describes what developers and users need to do to use Smart-
Conf library and configurations. Section 5 describes how
SmartConf library is implemented with new control theo-
retic techniques in detail.

4.1 Developers’ effort

4.1.1 General Code Refactoring
First, developers must provide a sensor that measures the
performance metric M to be controlled. Such sensors are
sometimes already provided by existing software. For exam-
ple, MapReduce contains sensors that measure and main-
tain up-to-date performance metrics in variables, such as
heap consumption in MemHeapUsedM, average request latency
in RpcProcessingAvgTime, etc.

Second, developers create a SmartConf system file invisi-
ble to users, as shown in Figure 2. In this system file, devel-
opers specify the mapping from a SmartConf configuration
entry C to its corresponding performance metricM and pro-
vide an initial setting forC , which only serves asC’s starting
value before the first run. After software starts, this field will
be overwritten by the SmartConf controller. As we will see
in the evaluation section, the quality of this initial setting
does not matter.
Third, developers replace the original configuration en-

try C in the configuration file with new entriesM .дoal and
M .дoal .hard that allow users to specify a numeric goal for
M and whether this goal is a hard constraint, as shown in
Figure 2. For example, a goal about “memory consumption
being smaller than the JVM heap size” is a hard constraint.

4.1.2 Calling SmartConf APIs
After the above code refactoring, developers can use Smart-
Conf APIs.

Initializing a SmartConf Configuration Instead of
reading a configuration value from the configuration
file into an in-memory data structure, developers simply
create a SmartConf object SC. As shown in Figure 3, the
constructor’s parameter is a string naming the configuration.
Using this string name, the SmartConf constructor reads
the configuration’s current setting, its performance goal,
and other auto-generated parameters from the SmartConf
system file, and then initializes a controller dedicated for

http://issues.apache.org/jira/browse/HBASE-7519

this configuration, which we will explain more in the next
section.

Using a SmartConf Configuration Whenever the soft-
ware needs to read the configuration, SC.setPerf is invoked
followed by SC.getConf. setPerf feeds the latest performance
measurement actual to an underlying controller, and getConf

calls the controller to compute an adjusted configuration
setting that can close the gap between actual performance
and the goal.

4.2 Handling Special Configuration Types
The discussion above assumes a basic configuration that
directly affects performance all the time. Next, we discuss
how SmartConf handles more complicated configurations.
Only one type requires extra effort from developers.

Indirect Configurations Sometimes, a configuration C
affects performance indirectly by imposing constraints on
its deputy C ′. For example, in HBase, max.queue.size limits
the maximum size of a queue. The size of the queue, denoted
as queue.size, then directly affects memory consumption.
To handle indirect configurations like max.queue.size, a few
steps in the above recipe need to change.
First, when creating the configuration object, develop-

ers should use the sub-type SmartConf_I as shown in Fig-
ure 4. Furthermore, developers initialize the constructor
with a transducer function that maps the desired value of
deputy C ′ to the desired value of configuration C . In most
cases, this transducer function simply conducts an identical
mapping—if we want the queue.size to drop to K , we drop
max.queue.size to K—and developers can directly use the de-
fault transducer function provided by SmartConf library as
shown in Figure 4.

Second, while updating the current performance through
SC.setPerf, developers need to provide the current value
of C ′—like the current queue.size, which is needed for the
controller to adjust the value of C . The control theoretic rea-
soning behind this designed is explained in the next section.
Finally, developers need to check every place where

the configuration is used to make sure that temporary
inconsistency between the newly updated configuration
C and the deputy C ′ is tolerated. For example, at run time
the queue.size may be larger than a recently dropped
max.queue.size. The right strategy is usually to ignore any
exception that might be thrown due to this inconsistency,
and simply wait forC ′ to drop back in bound. This change is
needed for any system that supports dynamic configuration
adjustment.

Conditional Configurations As discussed in Section 2,
some configurations affect performance metrics condition-
ally. Consequently, their controllers should only be invoked

1 /* For indirect configurations */

2 public class SmartConf_I extend SmartConf {

3 SmartConf_I (string ConfName, Transducer t);

4 void setPerf (double actual, int deputyConf);

5 }

6
7 /* Tranducer super class. Developers can customize a subclass.*/

8 public class Transducer {

9 int transduce (int input) {return input};

10 }

Figure 4. SmartConf sub-class

when they take effect. Fortunately, this is already taken care
of by the baseline SmartConf library, because developers
naturally only invoke SC.setPerf and SC.getConf when the
software is to use the configuration.

Correlating Configurations Some configurationsmay af-
fect the same performance goal simultaneously, and their
corresponding controllers need to coordinate with each other.
This case is transparently handled by SmartConf library and
its underlying controllers synthesized by SmartConf . As long
as developers specify the same performance metricM for a
set of configurations C, SmartConf will make sure that their
controllers coordinate with each other. We will explain the
control theoretic details in the next section.

4.3 Users’ Effort
With the above changes, users are completely relieved of
directly setting performance-sensitive configurations.
In the configuration file, users simply provide two items

to describe the performance goal associated with a Smart-
Conf configuration. First, a numerical number that specifies
the performance goal, which could be the desired latency of
user request, the maximum size of the memory consump-
tion, etc. Second, a binary choice about whether or not the
corresponding goal imposes a hard constraint. Developers
provide default settings for these items, such as setting the
memory-consumption goal to be the JVM heap size, just like
that in traditional configuration files. When users specify
goals that cannot possibly be satisfied, SmartConf makes its
best effort towards the goal and alerts users that the goal is
unreachable.
Users or administrators can update the goal at run time

through the setGoal API in Figure 3.

5 SmartConf Controller Design
“everything always has a tradeoff.” —

CASSANDRA-13304

Baseline controller We choose a recently proposed
controller-synthesis methodology [12] as the foundation for
SmartConf controller. This methodology first approximates
how system performance reacts to a configuration by
profiling the application and building a regression model

http://issues.apache.org/jira/browse/CASSANDRA-13304

relating performance to configuration settings:

sk = α · ck−1 (1)

where sk is the system performance measured at time k and
ck−1 is the configuration value at time k − 1. A controller
is then synthesized to select the configuration parameter’s
next value ck+1 based on its previous value ck and the error
ek+1 between the desired s̃ and measured performance sk+1:

ck+1 = ck +
1 − p

α
ek+1. (2)

where p is the pole value that determines how aggressively
the controller reacts to the current error.
Although simple, the above controller is robust to model

inaccuracy and does not demand intensive profiling. We will
explain more about this in Section 5.6.

Challenges for SmartConf Unfortunately, the baseline
controller, as well as all existing control techniques, cannot
handle several challenges unique and crucial to PerfConfs.
1. How to automatically set the pole p, to hide this control
parameter from users.
2. How to handle hard goals that do not allow overshoot,
such as memory consumption.
3. How to handle the indirect relationships between some
configurations and performance.
4. How to handle multiple interacting configurations so that
their controllers do not interfere with each other.

We explain how these challenges are addressed below.

5.1 How to Decide the Pole Parameter
It is difficult for developers with no control background to
set this value, so SmartConf sets it automatically.
The pole p determines the controller’s tolerance for er-

rors between the model built during profiling and the true
behavior. Given an error ∆ between the true performance s
and the modeled performance ŝ , where ∆ = s/ŝ , the pole can
simply be set to p = 1 − 2/∆, if ∆ > 2 and p = 0 otherwise.
Setting p thusly guarantees the controller will converge [20].

Of course, we do not expect SmartConf users to know ∆,
or even be aware of these control specific issues. Therefore,
SmartConf projects ∆ based on the system’s (in)stability dur-
ing profiling: ∆ = 1 + 1

N
∑N

1
3σi
mi ′

, where σi andmi
′ are the

standard deviation and mean of the performance measured
w.r.t minimum performance under the i-th sampled configu-
ration value. This equation provides a statistical guarantee
that the controller will converge to the desired performance
as long as the error between the model built during profiling
and the true response is correct to within three standard
deviations (i.e., 99.7% of the time).

5.2 Handle Hard Goals
Many PerfConfs are associated with a hard==1 constraint,
meaning that the goals like no OOM cannot be violated (Ta-
ble 4). Handling these hard constraints is crucial for system
availability. Unfortunately, traditional controllers can limit
overshoot (i.e., the maximum amount by which the system
may exceed the goal) only in continuous physical systems,
not in discrete computing systemswhere a disturbance could
come suddenly and discretely. For example, a new process
could unexpectedly allocate a huge data structure.

Strawman One naive solution is to choose an extremely
insensitive pole p (e.g., close to 1), so that the output per-
formance will move very slowly towards the goal, making
overshooting unlikely. Unfortunately, this strategy does not
work, as will be shown in experiments (Section 6). It intro-
duces extremely long convergence process, which sacrifices
other aspects of performance and still cannot prevent over-
shooting when system dynamics encounter disturbance.

A better strawman Recent work that uses controllers to
avoid processor over-heating [47] proposes a virtual goal
s̃v that is smaller than the real constraint s̃ . The controller
then targets s̃v , instead of s̃ . Unfortunately, this work still
has two key limitations. First of all, while it works well for
temperature—which changes slowly and continuously—it
does not work well for goals like memory—which can change
suddenly and dramatically. Second, it relies on expert knowl-
edge to manually set the virtual goal s̃v , without providing
a general setting methodology.

Our Solution SmartConf proposes two new techniques to
address goals that do not allow overshoot: automated virtual-
goal setting and context-aware poles.

First, SmartConf proposes a general methodology to com-
pute the virtual goal s̃v considering system stability un-
der control. Intuitively, if the system is easily perturbed, s̃v
should be far-away from s̃ in order to avoid accidental over-
shooting. Otherwise, s̃v can be close to s̃ for better resource
utilization.
To measure the system stability, we compute the coef-

ficient of variation λ during the performance profiling at
the model-building phase. That is, λ := 1

N
∑N

1
σi
mi

, where σi
andmi are the standard deviation and mean of the perfor-
mance measured under the i-th sampled configuration value.
Clearly, the bigger λ is, the more unstable the system is and
hence the lower s̃v should be. Following this intuition, we
compute s̃v by (1-λ)*s̃ .

Second, SmartConf uses context-aware poles that are con-
servative when the system is "safe" and aggressive when in
“danger”. Specifically, before the virtual goal s̃v is reached,
we use the regular pole, discussed in Section 5.1. This pole is
tuned to provide maximum stability given the natural system
variance and may sacrifice reaction time for stability. After

s̃v is reached, we use the smallest possible pole, 0, which
moves the system back into the safe region as quickly as
possible.
As we can see, SmartConf handles hard goals without

requiring any extra inputs from users or developers. The
implementation of SmartConf API SmartConf::getConf will
automatically switch to the above algorithm (i.e., two poles
and virtual goal) once the configuration file specifies a per-
formance goal with the configuration attribute hard==1. Ex-
periments in Section 6 demonstrate that the above two tech-
niques are both crucial to avoid over-shooting while main-
taining high resource utilization.

5.3 Handle Configurations with Indirect Impact
A PerfConf C may serve as a threshold for a deputy variable
C ′ (∼50% among PerfConfs in Table 4). Directly modeling
the relationship between performance and C is difficult, as
changing C often does not immediately affect performance.

SmartConf handles this challenge by building a controller
for the deputy variableC ′ using the technique discussed ear-
lier and adjusting the threshold configurationC based on the
controller-desired value of C ′. Specifically, at run time, the
controller computes the desired next value of C ′ based on
the current performance and the current value of C ′, which
is why the SmartConf_I::getPerf function needs two param-
eters (Figure 4). SmartConf then adjusts C to move C ′ to the
desired value. IfC simply specifies the upper-bound or lower-
bound of C ′, SmartConf sets C to C ′

next. If the relationship
is more complicated, developers need to provide a custom
transducer function as shown in Figure 4.
For example, SmartConf profiles how software memory

consumption changes with queue.size, and computes how to
adjust queue.size based on the current memory consumption.
If the desired sizeq is smaller than max.queue.size, SmartConf
drops max.queue.size to q. This does not immediately shrink
queue.size, but will prevent the queue from taking in new
RPC requests until queue.size drops to q.

5.4 Handle Multiple, Interacting PerfConfs
The discussion so far assumes SmartConf creates an inde-
pendent controller for each individual configuration. It is
possible that multiple configurations—and hence multiple
controllers—are associated with the same performance con-
straint, as implied by Table 4. We must ensure that each
controller works with others towards the same goal. For
example, when two controllers independently decide to in-
crease q1.size and q2.size, SmartConf must ensure no OOM.
Traditional control techniques synthesize a single con-

troller that sets all configurations simultaneously. This ap-
proach demands much more complicated profiling and con-
troller building, essentially turning a O(K ·N) problem into a
O(NK) problem, assumingK PerfConfs each withN possible
settings [13]. Furthermore, it is fundamentally unsuitable for

PerfConfs, as different PerfConfs may be developed at differ-
ent times as software evolves, and they may be used in dif-
ferent modules and moments during execution. We assume
developers will call getPerf and setConf at the places the
program uses a PerfConf value. Traditional techniques for
coordinating control would require all getPerf and setConf

calls be made in the same location at the same time, which
we believe is infeasible in a large software system.

Therefore, instead of synthesizing a single complicated
controller to set all configurations simultaneously, Smart-
Conf uses a protocol such that controllers will independently
work together. When we synthesize the controller for C , the
performance impact of related configurations is part of the
disturbance captured during profiling and hence affects how
SmartConf determines the pole (Section 5.1) and the virtual
goal (Section 5.2). As we will discuss soon in Section 5.6,
even if the profiling is incomplete, our controller-synthesis
technique still provides statistical guarantees that the goal
will be satisfied.

When developers are extremely cautious about not violat-
ing a performance goal or feel particularly unsure about the
profiling, SmartConf provides a safety net by applying an in-
teraction factor N to Equation 2. Specifically, developers can
mark a specific performance goal—e.g., memory consump-
tion or 99 percentile read latency—as super-hard. While pro-
cessing the SmartConf system file, SmartConf counts how
many, configurations are associated with this super-hard
goal. Then, when initializing a corresponding controller c ,
SmartConf will use ck +

1−p
Nα ek+1 instead of ck +

1−p
α ek+1 as

the formula to compute the setting of ck+1, splitting the per-
formance gap ek+1 evenly to all N interacting configurations.

5.5 Other Implementation Details
Our SmartConf library is implemented in Java. The
SmartConf classes shown in Figure 3 and Figure 4 contain
private fields representing the configuration name ConfName,
current configuration setting, current performance, and
controller parameters, including pole, α , goal, and virtual
goal (for SmartConf_I class). These controller parameters
are computed inside the SmartConf constructor based on
the profiling results stored in a configuration-specific file
<ConfName>.SmartConf.sys. Of course, future implementations
can change to compute these parameters only once after all
the profiling is done.
The SmartConf system file SmartConf.sys contains an en-

try that allows developers to enable or disable profiling.
Once profiling is enabled, the calling of SmartConf::setPerf
records the current performance measurement not only in
the SmartConf object but also in a buffer, together with the
current (deputy) configuration value, periodically flushed to
file <ConfName>.SmartConf.sys, which will be read during the
initialization of configuration <ConfName>.

Profiling Evaluation Workload
ID Issue Description Workload Phase-1 Phase-2

CA6059 memtable_total_space_in_mb limits the memtable size.

YCSBA

YCSB YCSB
N-N-Y Too big, OOM; Too small, write latency hurts.

0.5W, 1MB

1.0W, 1MB, C0 0.9W, 1MB, C0.5
HB2149 global.memstore.lowerLimit decides how much memstore data is flushed. YCSB YCSB
Y-Y-N Too big, write blocked for too long; Too small, write blocked too often. 1.0W, 1MB, 10s 1.0W, 1MB, 5s
HB3813 ipc.server.max.queue.size limits RPC-call queue size. YCSB YCSB
N-N-Y Too big, OOM; Too small, read/write throughput hurts. 1.0W, 1MB 1.0W, 2MB
HB6728 ipc.server.response.queue.maxsize limits RPC-response queue size. YCSB YCSB
N-N-Y Too big, OOM; Too small, read/write throughput hurts. 0.0W, 2MB 0.3W, 2MB

HD4995 content-summary.limit limits #files traversed before du releases big lock. TestDFSIO TestDFSIO TestDFSIO
Y-N-N Too big, write blocked for long; Too small, du latency hurts. single-client multi-clients, 20s multi-clients, 10s

MR2820 local.dir.minspacestart decides if a worker has enough disk to run task. WordCount WordCount WordCount
Y-Y-Y Too small, OOD; Too big, low utility (job latency hurts). 2G, 64MB, 1 640MB, 64MB, 2 640MB, 128MB, 2

Table 6. Benchmark suite and workload. ?-?-? under a bug ID shows whether the PerfConf is conditional, direct, and hard. In
issue description, the main constraint that users complain about is put earlier, and the trade-off is later. For YCSB [6] workload,
xW, write portion; yMB, request size; Cz, read index cache ratio. ts, latency constraint. Wordcount(x,y,z): input file size; split
size; parallelism per worker

Profiling To model the effects the controller has on the tar-
get performance metric, a few performance measurements
need to be taken by running profiling workloads while vary-
ing the configuration parameter to be controlled. The larger
the range of workloads, the more robust the control design
will be when working with previously unseen workloads.
We also base the pole and the virtual goal on the measured
mean and standard deviation, so enough samples are needed
for the central limit theorem to apply. As we will formally
discuss below and experimentally demonstrate in Section 6,
SmartConf produces effective and robust controllers without
intensive profiling.

5.6 Formal Assessment and Discussion

Stability We want the system under control to be stable.
That is, it should converge to the desired goal rather than
oscillate around it, which could cause unpredictable per-
formance or software crashes. Based on analysis in previ-
ous work, the controller in equation 2 is stable as long as
0 ≤ p < 1 and p = 1− 2/∆ for ∆ > 2 [12]. Unlike prior work,
SmartConf assumes ∆ is unknown, so we provide a weaker
probabilistic guarantee that the system will converge as long
as the error is within three standard deviations of the true
value. This guarantee comes without requiring users to have
control-specific knowledge.

Overshoot We hope to ensure that hard goals that do not
allow overshoot are respected. Following traditional control
analysis, SmartConf is free of overshooting because its de-
sign ensures 0 ≤ p < 1 [20]. Such analysis, however, assumes
no disturbances, but we know we are deploying SmartConf
into unpredictable environments.

With two enhancements discussed in Section 5.2, we avoid
overshooting with high probability even in unpredictable
environments. By setting the virtual goal to λ := 1

N
∑N

1
σi
mi

,
we provide 84% probability of being on the "safe" side of
no-overshoot goals.1 The two-pole enhancement further in-
creases the likelihood that SmartConf respects the constraint,
because any measurement above the virtual goal causes the
largest possible reaction in the opposite direction.

6 Evaluation
“I think going to 1G [default] works, ... let’s do some
testing before submitting a patch” – HBASE-4374

6.1 Evaluation methodology

BenchmarksWe apply SmartConf to 6 PerfConf issues in
Cassandra, HBase, HDFS, and MapReduce, as shown in Table
6. These 6 cases together cover a variety of configuration
features, like conditional or not, direct or not, hard constraint
or not, as listed by ?-?-? sequence in Table 6. We consider
bug-reporters’ main concern as the performance goal, and
the trade-off mentioned by users or developers as the trade-
off metric that we want to optimize while satisfying the goal,
both listed in the issue description of Table 6. They cover a
variety of performance metrics, memory, disk, latency, etc.

Workloads SmartConf works in a wide variety of workload
settings, but we do not have space to show that. Therefore,
in this section, our workload design follows several princi-
ples: (1) profiling and evaluation workload are different, so

1Assuming a normal distribution, 68% of samples are within 1 standard
deviation, which means 16% is higher and 16% is lower. In our case, however,
one side is safe, so we have an 84% probability of not overshooting.

https://issues.apache.org/jira/browse/CASSANDRA-6059
https://issues.apache.org/jira/browse/HBASE-2149
https://issues.apache.org/jira/browse/HBASE-3813
https://issues.apache.org/jira/browse/HBASE-6728
https://issues.apache.org/jira/browse/HDFS-4995
https://issues.apache.org/jira/browse/MAPREDUCE-2820
http://issues.apache.org/jira/browse/HBASE-4374

 0

 0.5

 1

 1.5

 2

CA6059 HB2149 HB3813 HB6728 HD4995 MR2820

S
p

e
e
d

u
p

SmartConf
Static−Optimal
Static−Nonoptimal
Static−Patch−Default
Static−Buggy−Default

X X XX X X X X

1
/4

XX

0
.3

5
0
.3

8

0
.3

5
0
.2

5

1
/4

1
/8

1
/3

0
.2

5

9
0

1
0

1
0

2

1
0

3

7
5
M

1
0
M

1
G

∞

1
.1

*1
0

7

1
0

5

0 0

2
3
0
M

3
0
0
M

0
M

1
M

Figure 5. Trade-off performance comparison. Normalized
upon the best-performing static configuration; x: fail con-
straints. The numerical PerfConf settings are above each
bar.

that we can evaluate how sensitive SmartConf is towards
profiling; (2) the evaluation workload contains two phases
where either the workload or the performance goal changes
(HB2149, HB6728), so that we can evaluate how well Smart-
Conf reacts to changing dynamics; (3) at least one phase of
the evaluation workload triggers the performance problems
complained by users in the original bug reports, so that we
can test whether SmartConf automatically addresses users’
PerfConf problems. Finally, we use standard profiling work-
loads to demonstrate SmartConf ’s robustness. Specifically,
for key-value stores, we use the popular YCSB [6] bench-
mark workload-A, which has a 50-50 read-write ratio; for
HDFS, we use a common distributed file system benchmark
TestDFSIO [27]; and we use WordCount for MapReduce, as
shown in Table 6.

Profiling As discussed in Section 5, SmartConf decides con-
troller parameters, such as α and p in Equation 2, based on
profiling results. For each PerfConf C , our profiling tries
4 different settings of C and collects 10 performance mea-
surements under each setting. These 4 settings are chosen to
provide a good coverage of the valid value range ofC , and the
performance measurement is taken every time setPerfAPI is
invoked on C at run time (i.e., every time C is used). In total,
the profiling provides 40 sample points, which are sufficient
for building linear regression models following the sample-
size rule-of-thumb [24]. For example, in case of HB3813, the
four profiled settings of ipc.server.max.queue.size are 40, 80,
120, and 160. Under each setting, a performance measure-
ment is taken every time an RPC request is enqueued.

MachinesWe use two servers to host virtual machines. Each
server has 2 12-core Intel Xeon E2650 v3 CPU with 256GB
RAM. Ubuntu 14.04 and JVM 1.7 are installed. We use virtual

 0

 5

 10

 15

(a
).

T
h

ro
u

g
h

p
u

t
 (

o
p

s
/s

)

SmartConf
Static Optimal: 90

 0

 200

 400

(b
).

U
s

e
d

 M

e
m

o
ry

(M

B
)

 0

 100

 200

 0 100 200 300 400 500 600 700

(c
).

m
a

x
.q

u
e

u
e

.s
iz

e

 (
it

e
m

s
)

Time (s)

Figure 6. SmartConf vs. static optimal on HB3813. workload
changes at ∼200s. Throughput is accumulative.

machines to host distributed systems under evaluation, with
2–6 virtual nodes set up for each experiment.

6.2 Does SmartConf Satisfy Constraints?
SmartConf always tracks the changing dynamics, satisfy-
ing the performance constraints for all 6 issues. These in-
clude hard constraints—preventing out-of-memory (CA6059,
HB3813, HB6728) and out-of-disk (MR2820) —and soft con-
straints on worst-case write latency (HB2149, HD4995).

It is difficult for statically set configurations to satisfy per-
formance constraints. The original default settings in all 6 is-
sues fail, denoted by the red-crosses for static-buggy-default
bars in Figure 5, which is why users filed issue reports. In our
experiments, even the patched default settings fail to satisfy
corresponding constraints in 4 cases. In HD4995, developers
simply moved a problematic hard-coded parameter into the
configuration file without changing the default setting and
asked users to figure out a suitable custom setting for them-
selves. In HB3813, HB6728, and MR2820, the patches made
the configurations more conservative, from 1000,∞, and 0
to 100, 1G, and 1M respectively. However, the new settings
still failed. In fact, we can easily find workloads to make the
patched default settings in the remaining 2 issues fail, too.

Case StudyWe take a closer look at how SmartConf handles
HB3813. Here, max.queue.size decides the largest size for an
RPC queue. When the system is under memory pressure,
a large queue can cause an out-of-memory (OOM) failure.
Unfortunately, a small queue reduces RPC throughput.
Figure 6b shows how memory consumption changes at

run time under different configuration settings. The red hor-
izontal line marks the hard memory-consumption constraint
(495MB), and the orange dashed line marks SmartConf ’s au-
tomatically determined virtual goal of 445MB. The blue curve
shows how memory consumption changes under Smart-
Conf ’s automated management. While under the dashed
line—in a "safe zone"—the system takes new RPC requests,

SmartConf slowly raises max.queue.size from its initial value
0—shown by the blue curves in Figure 6c—and the memory
consumption increases. Once over the dashed line, Smart-
Conf quickly decreases max.queue.size—shown by the dips
of the blue curve in Figure 6c—and the memory drops. Even
when the workload shift increases each RPC request size
(at about the 200 second point), the memory consumption
is always under control, as SmartConf reacts to the work-
load change by dropping the max.queue.size to around 50—as
shown by the blue curves—after 200 seconds in Figure 6c.
Overall, the system never has OOM errors with SmartConf .

In comparison, the old default setting, 1000, causes OOM
almost immediately after the first workload starts; even the
new default setting in the patch, 100, still causes OOM shortly
after the second workload starts. A conservative setting—
e.g., 90 in this experiment—avoids OOM, shown by the green
curves in Figure 6ab. However, there is no way for users/de-
velopers to predict what configuration will be conservative
enough for the future workload.

6.3 Does SmartConf Provide Good Tradeoffs?
Figure 5 shows that SmartConf provides performance trade-
offs better than the best static configuration. While all of
our case studies have different constraints, they all must
optimize latency or throughput under those constraints. The
figure shows SmartConf ’s speedup in these secondary met-
rics relative to various static configurations.
We find the best static configuration by exhaustively

searching all possible PerfConf settings that meet the
constraint throughout our two-phase workloads. These best
settings are often sub-optimal or even fail performance
constraints once workloads change. Figure 5 also shows the
performance under randomly chosen static settings.
SmartConf outperforms the best static setting because

it automatically adapts to dynamics. Although SmartConf
may start with a poor initial configuration (e.g., 0 in Figure
6c), it quickly adjusts so that the constraint is just met and
the tradeoffs are optimal. When the workload changes from
phase-1 to phase-2 in our experiments, SmartConf quickly
adjusts again. In comparison, since different phases have dif-
ferent constraints, a static configuration can only be optimal
for one phase and must sacrifice performance for the other.
For example, as shown in Figure 6ab, to avoid OOM dur-

ing both phases, the static optimal configuration (90) is too
conservative and unnecessarily reduces memory during the
first phase. In contrast, SmartConf is never too conservative
or too aggressive. Throughout the two phases, SmartConf
achieves 1.36× speedup in write throughput.

As another example, in MR2820, to make sure WordCount
can succeed in both phases, the best static setting for
minspacestart is 230MB, because phase-2 requires that much
disk space to run. However, this is overly conservative
for phase-1 that produces much smaller intermediate files.

0

100

200

300

400

500

0 30 60 90 120 150 180Time(s)

U
se

d
M

em
or

y(
M

B
)

SmartConf
Single Pole
No Virtual Goal

Figure 7. SmartConf vs. alternative controllers.

Consequently, SmartConf runs WordCount much faster in
phase-1 and achieves 1.50× total speedup.

6.4 Alternative Design Choices
SmartConf ’s controller handles hard constraints differently
from traditional control design in two ways (Section 5.2).
We experimentally compare SmartConf with the traditional
alternatives below.

A Single Pole with a Good Virtual Goal Traditional con-
trol design handles hard constraints—e.g., avoiding processor
over-heating [47]—by using a single conservative pole and
a virtual goal. We briefly compare this traditional design to
SmartConf by recreating the HB-3813 case study using a less
stable workload (70% write with 30% read). We let SmartConf
and this alternative controller use the same virtual goal and
the same pole 0.9. The only difference is that SmartConf has
a second pole, 0, for post-virtual-goal use.
As shown in Figure 7, SmartConf still behaves well, yet

the single-pole alternative controller causes an OOM at time
80s. Around 25s, both controllers start to limit queue size,
but the alternative one is simply too slow. When close to the
memory limit—i.e., beyond the virtual goal—that slowness
is catastrophic because just a few extra RPC requests can
cause a system crash. Overall, SmartConf is conservative
when growing the queue and extremely aggressive when
shrinking it. In contrast, with only one pole, the alternative
controller is conservative when growing the queue and too
conservative when shrinking it.

Without (a good) Virtual Goal Traditional control design
does not consider virtual goals. We rerun the HB3813 exam-
ple, this time targeting the actual system memory instead
of the virtual goal determined by SmartConf . As shown in
Figure 7, the system quickly over-allocates memory leading
to a JVM crash at about 36s. The virtual goal is essential
for meeting hard constraints because it gives SmartConf ’s
controller time to react to unexpected situations. Needless
to say, selecting the right virtual goal is crucial. A careless

ID Sensor Invoke APIs Others Total

CA6059 35 6 1 42
HB2149 31 6 1 38
HB3813 2 6 9 17
HB6728 2 6 0 8
HD4995 70 6 0 76
MR2820 53 8 4 65

Table 7. Lines of code changes for using SmartConf

selection easily leads to violating constraints or wasting re-
sources. We skip the experimental results here due to space
constraints.

6.5 Other results

Is SmartConf easy to use? As shown in Table 7, it takes
little effort for developers to adopt SmartConf , as few as 8
lines of code changes. In most cases, the changes are domi-
nated by implementing performance sensing. Occasionally,
there are code changes unrelated to performance sensing
or SmartConf -API invocation, and are counted in the “Oth-
ers” column in Table 7. For example, in HB3813, changes are
needed to convert a queue’s length from statically fixed to
dynamically adjustable. For MR2820, changes are needed to
deliver the configuration computed by one node, the Master
node, to another, the Slave node.

Interacting controllers To evaluate whether SmartConf
can handle multiple interacting PerfConfs, as mentioned
in Section 5.4, we apply SmartConf to tackle HB3813 and
HB6728 simultaneously. The PerfConfs in these two cases
limit the size of RPC-request queue and RPC-response queue,
respectively, both affecting memory consumption. We start
with a workload of writes, occupying a large space in the
request queue and a small space in the response queue. Af-
ter 50 seconds, we add a second workload of reads, which
take small space in the request queue and large space in the
response queue. Figure 8 shows the results. When the sec-
ond workload just starts, the request queue quickly fills with
many small read requests, and the response queue jumps up.
Then, SmartConf reacts by bringing the size of both queues
down dramatically. After this initial disturbance, the size of
each queue dynamically fluctuates: during periods where
more read requests enter the system, the response queue
size is limited; when there are more write requests, the RPC
queue size is throttled. At no time is the memory constraint
(red line) violated.

This study demonstrates that multiple PerfConfs can be
composed and SmartConf can still guarantee the hard con-
straint in doing so. It also further motivates dynamically
adjusting configurations — otherwise, we would have to pick
very small sizes for both queues.

 0

 200

 400

Time(s)

U
s
e
d

 M
e
m

o
ry

 (

M
B

)

SmartConf

 0

 300

 600

 0 30 60 90 120 150 180 210 240
 0

 20

 40

 60

Time(s)

m
a
x
.q

u
e
u

e
.s

iz
e

 (
it

e
m

s
)

re
s
p

o
n

s
e
.q

u
e
u

e
.m

a
x
s
iz

e

 (
M

B
)

max.queue.size

response.queue.maxsize

Figure 8. SmartConf adjusts two related PerfConfs.

6.6 Limitations of SmartConf
SmartConf also has its limitations. First, it does not work for
configurations whose performance goals are about optimal-
ity instead of constrained optimality. For example, MR5420
discusses how to set max_chunks_tolerablewhich decides how
many chunks that input files can be grouped into during dis-
tributed copy. The on-line discussion shows that users only
care about one goal here — achieving the fastest copy speed.
Consequently, SmartConf is not a good fit.

Second, the current SmartConf design does not work if the
relationship between performance and configuration is not
monotonic. This happens to be the case in MR5420 — if there
are too few chunks, the copy is slow due to load imbalance;
if there are too many chunks, the copy is also slow due to
lack of batching. Machine learning techniques would be a
better fit for these two challenges. In our empirical study of
80 PerfConfs in Cassandra, HBase, HDFS, and MapReduce,
such non-monotonic relationships occur to less than 10% of
PerfConfs. Of course, the non-monotonic relationship could
occur at corner cases that we did not check.
Third, some configurations might be inherently difficult

to adjust dynamically, as the adjustment may cost run-time
performance or code-refactoring effort. For example, chang-
ing max_chunks_tolerable dynamically may require copying
files around and degrade system performance; allowing a
system to change its number of worker threads dynamically
would require non-trivial coding in its work dissemination
and work-progress monitoring components.

Fourth, in distributed environment, additional inter-node
communication may be required for some performance mea-
surement and configuration adjustment, like that in MR2820.
Since the amount of data transfer is negligible, we expect
little performance degradation from such communication.
Finally, SmartConf provides statistical guarantees as dis-

cussed in Section 5.6, but cannot guarantee all constraints to
be always satisfied.

7 Related Work
“What is the proper way of setting the configuration
values programmatically?” – MapReduce-12825547

Control theoretic frameworks Control theory provides
a general set of mechanisms and formalisms for ensuring
that systems achieve desired behavior in dynamic environ-
ments [33]. While the great body of control development has
targeted management of physical systems (e.g., airplanes),
computer systems are natural targets for control since they
must ensure certain behavior despite highly dynamic fluctu-
ations in available resources and workload [19, 32].
While control theory covers a wide variety of general

techniques, control applications tend to be highly specific
to the system under control. The application-specific nature
of control solutions means that controllers that work well
for one system (e.g. a web-server [35, 49] or mobile system
[34]) are useless for other systems.
Thus, a major thrust of applying control theory to com-

puting systems is creating general and reusable techniques
that put control systems in the hands of non-experts [14].
Towards this end, recent research synthesizes controllers
for software systems [12, 13, 46]. Other approaches package
control systems as libraries that can be called from existing
software [28, 44, 67]. While these techniques automate much
of the control design process, they still require users to have
control specific knowledge to specify key parameters, like
the values of p and α , and choose what controllers to use.
Furthermore, none of them address the PerfConf specific
challenges of meeting hard constraints, using indirect and
interacting parameters, etc.

In addition to solving PerfConf-specific challenges, Smart-
Conf is unique in hiding all control-specific information from
the users/developers. Thus, SmartConf ’s interface works at a
much higher-level of abstraction than prior work that encap-
sulates control systems. In fact, SmartConf ’s implementation
could swap a control system for some other management
technique in the future. In exchange for its higher level of
abstraction, SmartConf provides only probabilistic guaran-
tees rather than the stronger guarantees that would come
from having an expert set a pole based on a known error
bound. SmartConf’s ability to automatically adjust to meet
user-defined goals is an example of a self-aware computing
system [23].

Machine learning frameworks Many learning
approaches have been proposed for predicting an optimal
configuration within a complicated configuration space
[8–10, 31, 40, 53, 65]. Machine learning has even been
applied to further improve existing heuristic autotuners,
like Starfish [21], by using learning models to direct the
search for optimal configurations [5, 60]. Perhaps the
most closely related learning works are those based on
reinforcement learning (RL) [51]. Like control systems,

RL takes online feedback. Several RL methods exist for
optimizing system resource usage [3, 15, 29, 30, 38]. RL
techniques, however, are not suited to meeting constraints
in dynamic environments [50]. In contrast, that is exactly
what control systems are designed to do, and they produce
better empirical results than RL on such constrained
optimization problems [36]. For this reason, several recent
efforts propose combining machine learning and control
theory [7, 22, 39, 45, 52]. We will explore such a combination
in future work where we will investigate replacing our
exhaustive profiling with more scalable learning approaches.

Misconfiguration Many empirical studies have looked at
misconfiguration [16, 41, 57, 62], but did not focus on Perf-
Confs. Much previous work has proposed using static pro-
gram analysis [42, 58] or statistical analysis [55, 56, 63, 66]
to identify and fix wrong or abnormal configurations. These
techniques mainly target functionality-related misconfigu-
rations and do not work for PerfConfs, as the proper set-
ting of a PerfConf highly depends on the dynamic workload
and environment, and can hardly be statistically decided
based on common/default settings. Techniques were also
proposed to diagnose misconfiguration failures [2, 54] and
misconfiguration-related performance problems [1]. They
are complementary to SmartConf that helps avoid miscon-
figuration performance problems.

8 Conclusions
Large systems are often equipped with many configurations
that allow customization. Many of these configurations can
greatly affect performance, and their proper setting unfortu-
nately depends on complicated and changing workloads and
environments. We argue that the traditional way of letting
users statically and directly set configuration values is fun-
damentally flawed. Instead, a new configuration interface is
designed to allow users and developers to focus on specifying
what performance constraints a configuration should sat-
isfy, and a control-theoretic technique is designed to enable
automated and dynamic configuration adjustment based on
the performance constraints. Our evaluation shows that the
SmartConf framework can out-perform static optimal con-
figuration setting while satisfying performance constraints.

Acknowledgments
We would like to thank the anonymous reviewers for
their insightful feedback and comments. This research
is supported by NSF (grants CNS-1563956, IIS-1546543,
CNS-1514256, CCF-1514189, CCF-1439091, CCF-1439156),
and generous support from the CERES Center for
Unstoppable Computing. Experiments were conducted
on the RIVER (CNS-1405959) and Chameleon testbeds
supported by the National Science Foundation. Henry
Hoffmann’s effort is additionally supported by the DARPA
BRASS program and a DOE Early Career award.

https://stackoverflow.com/questions/12825547/setting-hadoop-job-configuration-programmatically

References
[1] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Automating

root-cause diagnosis of performance anomalies in production software.
In OSDI, 2012.

[2] Mona Attariyan and Jason Flinn. Automating configuration trou-
bleshooting with dynamic information flow analysis. In OSDI, 2010.

[3] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coordinated
management of multiple interacting resources in chip multiprocessors:
A machine learning approach. In MICRO, 2008.

[4] CASSANDRA-1007. Make memtable flush thresholds per-cf instead of
global. https://issues.apache.org/jira/browse/CASSANDRA-1007.

[5] Chi-Ou Chen, Ye-Qi Zhuo, Chao-Chun Yeh, Che-Min Lin, and Shih-
Wei Liao. Machine learning-based configuration parameter tuning on
hadoop system. In BigData Congress, 2015.

[6] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
SoCC, 2010.

[7] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen
Tu. On the sample complexity of the linear quadratic regulator. Tech-
nical Report 1710.01688v1, arXiv, 2017.

[8] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In ASPLOS, 2013.

[9] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
efficient and qos-aware cluster management. In ASPLOS, 2014.

[10] Zhaoxia Deng, Lunkai Zhang, Nikita Mishra, Henry Hoffmann, and
Fred Chong. Memory cocktail therapy: A general learning-based
framework to optimize dynamic tradeoffs in nvm. In MICRO, 2017.

[11] Lu Fang, Khanh Nguyen, Guoqing Xu, Brian Demsky, and Shan Lu.
Interruptible tasks: Treating memory pressure as interrupts for highly
scalable data-parallel programs. In SOSP, 2015.

[12] Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated
design of self-adaptive software with control-theoretical formal guar-
antees. In ICSE, 2014.

[13] Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated
multi-objective control for self-adaptive software design. In ESEC/FSE,
2015.

[14] Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolás
D’Ippolito, Ilias Gerostathopoulos, Andreas Berndt Hempel, Henry
Hoffmann, Pooyan Jamshidi, Evangelia Kalyvianaki, Cristian Klein,
Filip Krikava, Sasa Misailovic, Alessandro Vittorio Papadopoulos,
Suprio Ray, Amir Molzam Sharifloo, Stepan Shevtsov, Mateusz Ujma,
and Thomas Vogel. Control strategies for self-adaptive software sys-
tems. TAAS, 11(4), 2017.

[15] ArchanaGanapathi, KaushikDatta, Armando Fox, andDavid Patterson.
A case for machine learning to optimize multicore performance. In
HotPar, 2009.

[16] Archana Ganapathi, Yi-Min Wang, Ni Lao, and Ji-Rong Wen. Why pcs
are fragile and what we can do about it: A study of windows registry
problems. In DSN, 2004.

[17] Jim Gray. Why do computers stop and what can be done about it? In
Symposium on Reliability in Distributed Software and Database Systems,
1986.

[18] HBASE-13919. Rationalize client timeout — it’s hard to understand
what all of these mean and how they interact. https://issues.apache.
org/jira/browse/HBASE-13919.

[19] Joseph L Hellerstein. Challenges in control engineering of computing
systems. In ACC, 2004.

[20] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury.
Feedback Control of Computing Systems. John Wiley & Sons, 2004.

[21] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang
Dong, Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A self-tuning
system for big data analytics. In CIDR, 2011.

[22] Henry Hoffmann. Jouleguard: energy guarantees for approximate
applications. In SOSP, 2015.

[23] Henry Hoffmann, Jim Holt, George Kurian, Eric Lau, Martina Maggio,
Jason E. Miller, Sabrina M. Neuman, Mahmut Sinangil, Yildiz Sinangil,
Anant Agarwal, Anantha P. Chandrakasan, and Srinivas Devadas.
Self-aware computing in the Angstrom processor. In DAC, 2012.

[24] Robert Vincent Hogg and Elliot A Tanis. Probability and statistical
inference. Pearson Educational International, 2009.

[25] T. Horvath, T. Abdelzaher, K. Skadron, and Xue Liu. Dynamic voltage
scaling in multitier web servers with end-to-end delay control. TC,
56(4), 2007.

[26] Jian Huang, Xuechen Zhang, and Karsten Schwan. Understanding
issue correlations: a case study of the hadoop system. In SoCC, 2015.

[27] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang.
The hibench benchmark suite: Characterization of the mapreduce-
based data analysis. In ICDEW, 2010.

[28] Connor Imes, David HK Kim, Martina Maggio, and Henry Hoffmann.
Poet: A portable approach to minimizing energy under soft real-time
constraints. In RTAS, 2015.

[29] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana. Self-Optimizing
Memory Controllers: A Reinforcement Learning Approach. In ISCA,
2008.

[30] Engin Ïpek, Sally A McKee, Rich Caruana, Bronis R de Supinski, and
Martin Schulz. Efficiently exploring architectural design spaces via
predictive modeling. In ACM SIGOPS Operating Systems Review, 2006.

[31] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, ShravanMatthur
Narayanamurthy, Alexey Tumanov, Jonathan Yaniv, RuslanMavlyutov,
Íñigo Goiri, Subru Krishnan, Janardhan Kulkarni, and Sriram Rao.
Morpheus: Towards automated slos for enterprise clusters. In OSDI,
2016.

[32] Christos Karamanolis, Magnus Karlsson, and Xiaoyun Zhu. Designing
controllable computer systems. In HOTOS, 2005.

[33] William S Levine. The control handbook. CRC press, 1996.
[34] Baochun Li and K. Nahrstedt. A control-based middleware framework

for quality-of-service adaptations. JSAC, 17(9), 1999.
[35] C. Lu, Y. Lu, T.F. Abdelzaher, J.A. Stankovic, and S.H. Son. Feedback

control architecture and design methodology for service delay guar-
antees in web servers. TPDS, 17(9), September 2006.

[36] Martina Maggio, Henry Hoffmann, Alessandro Vittorio Papadopoulos,
Jacopo Panerati, Marco D. Santambrogio, Anant Agarwal, and Alberto
Leva. Comparison of decision-making strategies for self-optimization
in autonomic computing systems. TAAS, 7(4), 2012.

[37] MAPREDUCE-6143. add configuration for mapreduce specu-
lative execution in mr2. https://issues.apache.org/jira/browse/
MAPREDUCE-6143.

[38] J. F. Martinez and E. Ipek. Dynamic multicore resource management:
A machine learning approach. Micro, 29(5), Sept 2009.

[39] Nikita Mishra, Connor Imes, John D. Lafferty, and Henry Hoffmann.
CALOREE: learning control for predictable latency and low energy.
In ASPLOS, 2018.

[40] Nikita Mishra, Huazhe Zhang, John D. Lafferty, and Henry Hoffmann.
A probabilistic graphical model-based approach for minimizing energy
under performance constraints. In ASPLOS, 2015.

[41] Kiran Nagaraja, Fábio Oliveira, Ricardo Bianchini, Richard P. Mar-
tin, and Thu D. Nguyen. Understanding and dealing with operator
mistakes in internet services. In OSDI, 2004.

[42] Ariel Rabkin and Randy Katz. Precomputing possible configuration
error diagnoses. In ASE, 2011.

[43] Ariel Rabkin and Randy Howard Katz. How hadoop clusters break.
IEEE software, 30(4), 2013.

[44] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. Swift:
software implemented fault tolerance. In CGO, 2005.

[45] MuhammadHusni Santriaji andHenryHoffmann. GRAPE:minimizing
energy for GPU applications with performance requirements. In
MICRO, 2016.

https://issues.apache.org/jira/browse/CASSANDRA-1007
https://issues.apache.org/jira/browse/HBASE-13919
https://issues.apache.org/jira/browse/HBASE-13919
https://issues.apache.org/jira/browse/MAPREDUCE-6143
https://issues.apache.org/jira/browse/MAPREDUCE-6143

[46] Stepan Shevtsov and Danny Weyns. Keep it simplex: Satisfying multi-
ple goals with guarantees in control-based self-adaptive systems. In
FSE, 2016.

[47] Filippo Sironi, Martina Maggio, Riccardo Cattaneo, Giovanni F
Del Nero, Donatella Sciuto, and Marco D Santambrogio. Thermos:
System support for dynamic thermal management of chip multi-
processors. In PACT, 2013.

[48] StackOverflow. Stack overflow business solutions: Looking to under-
stand, engage, or hire developers? https://stackoverflow.com/.

[49] Q. Sun, G. Dai, and W. Pan. LPV model and its application in web
server performance control. In ICCSSE, 2008.

[50] Richard S. Sutton and Andrew Barto. Reinforcement Learning: An
Introduction, Second Edition. MIT Press, 2012.

[51] G. Tesauro. Reinforcement learning in autonomic computing: A mani-
festo and case studies. IC, 11, 2007.

[52] Stephen Tu and Benjamin Recht. Least-squares temporal differ-
ence learning for the linear quadratic regulator. Technical Report
1712.08642v1, arXiv, 2017.

[53] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.
Automatic database management system tuning through large-scale
machine learning. In SIGMOD, 2017.

[54] Chad Verbowski, Emre Kiciman, Arunvijay Kumar, Brad Daniels, Shan
Lu, Juhan Lee, Yi-Min Wang, and Roussi Rousse. Flight data recorder:
Monitoring persistent-state interactions to improve systems manage-
ment. In OSDI, 2006.

[55] Helen J Wang, John Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang.
Peerpressure: A statistical method for automatic misconfiguration
troubleshooting. Technical report, Microsoft Research, 2003.

[56] Yi-Min Wang, Chad Verbowski, John Dunagan, Yu Chen, Helen J.
Wang, Chun Yuan, and Zheng Zhang. Strider: a black-box, state-based
approach to change and configuration management and support. Sci.
Comput. Program., 53(2), 2004.

[57] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasu-
pathy, and Rukma Talwadker. Hey, You Have Given Me Too Many
Knobs! Understanding and Dealing with Over-Designed Configuration
in System Software. In ESEC/FSE, 2015.

[58] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long
Jin, and Shankar Pasupathy. Early detection of configuration errors to
reduce failure damage. In OSDI, 2017.

[59] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng,
Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy. Do not blame
users for misconfigurations. In SOSP, 2013.

[60] Nezih Yigitbasi, Theodore L Willke, Guangdeng Liao, and Dick Epema.
Towards machine learning-based auto-tuning of mapreduce. In MAS-
COTS, 2013.

[61] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N
Bairavasundaram, and Shankar Pasupathy. An empirical study on
configuration errors in commercial and open source systems. In SOSP,
2011.

[62] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.
Bairavasundaram, and Shankar Pasupathy. An empirical study on
configuration errors in commercial and open source systems. In SOSP,
2011.

[63] Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang, Chad Ver-
bowski, and Arunvijay Kumar. Context-based online configuration-
error detection. In USENIX ATC, 2011.

[64] Wanghong Yuan and Klara Nahrstedt. Energy-efficient soft real-time
CPU scheduling for mobile multimedia systems. In SOSP, 2003.

[65] Huazhe Zhang and Henry Hoffmann. Maximizing performance un-
der a power cap: A comparison of hardware, software, and hybrid
techniques. In ASPLOS, 2016.

[66] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu
Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou. Encore: Exploiting
system environment and correlation information for misconfiguration
detection. In ASPLOS, 2014.

[67] Ronghua Zhang, Chenyang Lu, Tarek F Abdelzaher, and John A
Stankovic. Controlware: A middleware architecture for feedback
control of software performance. In ICDCS, 2002.

[68] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma,
Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. Bestconfig: tapping
the performance potential of systems via automatic configuration
tuning. In SoCC, 2017.

https://stackoverflow.com/

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Understanding PerfConfs
	2.1 Methodology
	2.2 Findings
	2.3 Summary

	3 SmartConf Overview
	4 SmartConf Framework
	4.1 Developers' effort
	4.2 Handling Special Configuration Types
	4.3 Users' Effort

	5 SmartConf Controller Design
	5.1 How to Decide the Pole Parameter
	5.2 Handle Hard Goals
	5.3 Handle Configurations with Indirect Impact
	5.4 Handle Multiple, Interacting PerfConfs
	5.5 Other Implementation Details
	5.6 Formal Assessment and Discussion

	6 Evaluation
	6.1 Evaluation methodology
	6.2 Does SmartConf Satisfy Constraints?
	6.3 Does SmartConf Provide Good Tradeoffs?
	6.4 Alternative Design Choices
	6.5 Other results
	6.6 Limitations of SmartConf

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

